×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • Development of an environmental monitoring portal

    The article focuses on the development of a web portal for monitoring and forecasting atmospheric air quality in the Khabarovsk Territory. The study analyzes existing solutions in the field of environmental monitoring, identifying their key shortcomings, such as the lack of real-time data, limited functionality, and outdated interfaces. The authors propose a modern solution based on the Python/Django and PostgreSQL technology stack, which enables the collection, processing, and visualization of air quality sensor data. Special attention is given to the implementation of harmful gas concentration forecasting using a recurrent neural network, as well as the creation of an intuitive user interface with an interactive map based on OpenStreetMap. The article provides a detailed description of the system architecture, including the backend, database, and frontend implementation, along with the methods used to ensure performance and security. The result of this work is a functional web portal that provides up-to-date information on atmospheric air conditions, forecast data, and user-friendly visualization tools. The developed solution demonstrates high efficiency and can be scaled for use in other regions.

    Keywords: environmental monitoring, air quality, web portal, forecasting, Django, Python, PostgreSQL, neural networks, OpenStreetMap

  • Prediction of gas concentrations based on neural network modeling

    The article discusses the use of a recurrent neural network in the task of predicting pollutants in the air based on simulated data in the form of a time series. Neural recurrent network models with long Short-Term Memory (LSTM) are used to build the forecast. Unidirectional LSTM (hereinafter simply LSTM), as well as bidirectional LSTM (Bidirectional LSTM, hereinafter Bi-LSTM). Both algorithms were applied for temperature, humidity, pollutant concentration, and other parameters, taking into account both seasonal and short-term changes. The Bi-LSTM network showed the best performance and the least errors.

    Keywords: environmental monitoring, data analysis, forecasting, recurrent neural networks, long-term short-term memory, unidirectional, bidirectional